Come funzionano i globi a levitazione magnetica

Vi è mai capitato di vedere uno di quei giochi costituiti da un globo, ad esempio terrestre, sospeso in aria all’interno di una struttura a semicerchio? Vi siete mai chiesti come sia possibile ottenere questo effetto?

Come probabilmente avete già intuito, all’interno del globo è situato un magnete. Nella struttura, in genere nella parte alta, è invece situata un’elettrocalamita, oggetto caratterizzato da un nucleo di materiale ferromagnetico attorno al quale è avvolto un solenoide, ossia un filo spiraleggiante nel quale viene fatta passare la corrente. Nel momento in cui la corrente passa nel filo, questa genera un campo magnetico ed in questo modo si magnetizza il ferro attorno al quale è avvolto il solenoide. A livello microscopico, infatti, i materiali ferromagnetici è come se fossero costituiti da piccoli magneti, detti domini, in cui poli positivi e negativi sono allineati. Quando è presente un campo magnetico esterno, questi domini si allineano secondo la direzione del campo, determinando una magnetizzazione di tutto il corpo. A questo punto il corpo è pronto per attrarre a sé i materiali polarizzati o nei quali si può indurre una polarizzazione delle cariche (che significa che le cariche positive e negative si orientano in maniera opposta a quelle della ferrocalamita, venendone attratte).

Tornando all’oggetto di nostro interesse, quindi, nel momento in cui la ferrocalamita è attiva, ossia quando scorre corrente nel solenoide, questa attira a sé il magnete sito all’interno del globo. Se questa fosse l’unica forza agente sul globo, esso non fluttuerebbe in aria, ma sbatterebbe sulla parte alta della struttura. Ci deve quindi essere almeno un’altra forza in gioco, che è la forza peso del globo stesso, che lo attira verso il basso.

Quindi, è sufficiente che la forza peso e la forza magnetica siano in equilibrio, no? In linea di principio sì, ma ottenere una forza magnetica esattamente uguale alla forza peso è più complesso che fare la seguente operazione, che è quella utilizzata in questi giochi.

La forza esercitata dall’elettrocalamita è in realtà maggiore della forza peso del globo, e quindi tende a portarlo in alto. Un sensore fa però in modo che, superata una certa distanza minima dalla struttura, la ferrocalamita si spenga, facendo cadere il globo. Appena però il globo, cadendo, risupera quel valore di distanza, ecco che la ferrocalamita si riaccende. Questo ciclo avviene ad una frequenza molto elevata, portando ad un’oscillazione impercettibile del globo attorno alla posizione nella quale lo vediamo levitare.

Ve ne proponiamo qualche esempio:

Vi ricordiamo che il nostro sito è iscritto al programma di affiliazione di Amazon, per cui comprando qualcosa dopo aver cliccato sui nostri link ci dai una mano, permettendoci di proseguire con il nostro progetto! 

Ti piace quello che scriviamo? Scopri qui come puoi sostenerci!

Onde Gravitazionali: la prima volta di LIGO e VIRGO
Il 27 settembre 2017, la Collaborazione Virgo e la Collaborazione LIGO hanno annunciato la prima osservazione di onde gravitazionali ottenuta tramite il lavoro congiunto
Scoperta una nuova luna nella fascia di Kuiper
2007OR10 è il nome del terzo pianeta nano in ordine grandezza nella regione transnettuniana, la regione in cui gli oggetti orbitano almeno in parte al di fuori dell'orbita
Stephen Hawking: una riflessione sull'uomo
Ieri, 14 marzo 2018, è morto Stephen Hawking. Abbiamo letto messaggi, riflessioni e commemorazioni di tutti i tipi sul web, ad indicare quanto fosse una figura amata da molti.
Pan, il disco volante satellite di Saturno
Per la prima volta la sonda Cassini si è avvicinata abbastanza al piccolo satellite di Saturno Pan da permettere di osservarne dettagliatamente la superficie.

Che Pan avesse
La scienza dei fiocchi di neve (galleria macrofotografica)
Con l'arrivo dell'inverno arrivano anche le prime nevicate e con esse tanta geometria. Eh sì, perché se avete mai visto un fiocco di neve con una lente d'ingrandimento
Esplosioni: Deflagrazione o Detonazione?




In natura le esplosioni sono dei fenomeni assai comuni! Un accumulo di energia chimica, nucleare o semplicemente di pressione può dare origine ad un'esplosione come avviene
SpaceX: Il Falcon Heavy
Nel precedente articolo abbiamo parlato del primo lancio del Falcon9 dal Launch Complex 39A del Kennedy Space Center, da cui hanno avuto inizio le epiche missioni del programma Apollo e dello Space

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

%d blogger hanno fatto clic su Mi Piace per questo: