Come funziona l’Atmosfera terrestre? – parte III

Terzo appuntamento con “Come funziona l’Atmosfera terrestre?”, la serie di approfondimenti che vuole portarci a capire più a fondo il funzionamento dell’atmosfera terrestre: dalla composizione dell’aria che respiriamo alle aurore boreali, dalla dinamica atmosferica al riscaldamento globale. Dopo aver introdotto nella prima parte i concetti di equilibrio idrostatico e la stratificazione atmosferica, ed aver parlato della composizione chimica nella seconda parte, oggi parliamo della circolazione atmosferica planetaria.

Per circolazione atmosferica si intendono l’insieme di moti di massa atmosferica che vengono distinti in genere in venti e moti convettivi. I primi sono moti orizzontali, ossia nelle direzioni di latitudine e longitudine, mentre i secondi sono moti verticali, ossia in direzione dell’altitudine.

La causa basilare del vento è la differenza di pressione: la forza gradiente, di cui abbiamo parlato nella Parte I di questa serie di approfondimenti, fa sì che le masse d’aria tendano a spostarsi dalle zone di alta pressione a quelle di bassa, cercando di eliminare il dislivello di pressione tra queste due zone (così come un gas tende a riempire tutto il contenitore in cui si trova). A creare queste differenze di pressione contribuisce in modo decisivo il riscaldamento differenziale della superficie terrestre dovuto all’inclinazione dell’asse rispetto all’irraggiamento solare: l’equatore è più caldo e i poli sono più freddi. L’aria più fredda è più compressa, ossia ha una pressione maggiore, mentre quella più calda è più espansa, ossia ha una pressione minore. In questo modo si innescano delle correnti che vanno dai poli all’equatore.

Nel loro moto, tuttavia, queste masse d’aria subiscono anche la forza di Coriolis, che tende a deviare i moti verso destra nell’emisfero boreale e verso sinistra in quello australe. Si tratta di una forza apparente, perché non è dovuta ad un qualche agente, ma solo alla scelta del sistema di riferimento. La seguente animazione può rendere più chiaro il fenomeno. Prendendo il moto della particella nera e guardando il punto rosso fisso, si può notare come per l’osservatore esterno (figura sopra), la particella compie un moto rettilineo, mentre per un osservatore interno (figura sotto), questo moto rettilineo appare curvilineo. Ma è appunto legato al fatto che nel secondo caso, osservando dalla superficie terrestre, stiamo ruotando insieme ad essa, e non vediamo che è in realtà la superficie terrestre a “sfilarsi” da sotto la particella in moto, facendo apparire il suo moto come curvilineo.

Il risultato netto dell’azione di queste forze, senza tenere in considerazione ulteriori complicazioni ed effetti locali che si hanno solo nel boundary layer, ossia nello strato più basso di atmosfera (vedi Parte I), e che saranno trattate in un prossimo approfondimento, è quello di generare dei venti paralleli alla superficie terrestre e dei moti convettivi verticali, necessari per eliminare i gradienti di pressione e temperatura.

Risultati immagini per only water earth winds atmospheric

I venti in gioco su scala planetaria si stabilizzano essenzialmente in sei fasce di latitudine. Nell’emisfero boreale, dal polo si generano dei venti che soffiano da nord-est verso sud-ovest detti polar easterlies (polari orientali). Alle nostre latitudini soffiano invece i westerlies, da sud-ovest verso nord-est, e procedendo verso l’equatore si hanno i trade winds, che sono altri easterlies. Nell’emisfero australe la situazione è speculare.

I moti globali non sono però solo orizzontali. Esistono delle correnti convettive dette celle di Hadley attorno all’equatore, celle di Ferrel alle medie latitudini e infine celle polari.

Le celle di Hadley vanno dalla fascia equatoriale fino a quelle tropicale e sono dovute all’intenso riscaldamento a cui è soggetto l’equatore. Il riscaldamento genera infatti una risalita di aria calda e meno densa che, raffreddandosi tende a discendere verso le zone tropicali, entrando in circolo nelle celle.

I westerlies nelle zone temperate tendono ad andare verso i poli: giunti al 60° parallelo si innalzano (in quanto più caldi della fredda aria polare), fino a raffreddarsi e ridiscendere, formando così le celle polari. La presenza di celle polari da una parte e celle di Hadley dall’altra determina la nascita delle celle di Ferrel a medie latitudini.

Nel prossimo approfondimento si tratteranno nel dettaglio i venti a scale minori ed i fenomeni che si ottengono introducendo la rugosità della superficie terrestre.

Come funziona l’atmosfera terrestre? – Parte I 

Come funziona l’atmosfera terrestre? – Parte II

Ti piace quello che scriviamo? Scopri qui come puoi sostenerci!

1,2,3 stella: quando una supergigante scompare.
Avete capito bene, un stella scomparsa. No non è un thriller astronomico e neanche uno scherzo, si tratta di una vera e propria supergigante rossa grande 25 volte quanto
LED come lucciole? I LEC
Realizzati dai ricercatori delle Università svedesi di Umeå e Linköping coordinati da Ludvig Edman, i LEC sono un dispositivo a stato solido in grado di emettere luce.
LEC è l'acronimo di "Light-emitting
SN 1987a, 30 anni dopo
Era il 24 febbraio del 1987 quando venne riportata la scoperta di un oggetto molto luminoso nella Grande Nube di Magellano (una galassia molto vicina alla nostra), il quale doveva aver aumentato
Un guscio di plasma per i rientri atmosferici
Viaggiare nello spazio non è così semplice come si è portati a pensare. La fantascienza ci offre spesso degli scenari molto idilliaci, in cui viaggiare da un pianeta all'altro
Plutone: ecco come si è formata la Sputnik Planitia
Uno studio pubblicato su Nature offre nuove possibilità sulla formazione della Sputnik Planitia, la grande pianura ghiacciata a forma di cuore che caratterizza una buona
Guida ai più grandi satelliti di Saturno
Tra le più interessanti scoperte ottenute tramite la sonda Cassini, nei 20 anni che ci ha accompagnati, sicuramente molte hanno riguardato la possibilità di vedere da vicino le
Nuclei Galattici Attivi nelle Meduse
Il vento di gas generato dal moto della galassia può generare un Nucleo Galattico Attivo a partire dal buco nero centrale. Lo studio pubblicato su Nature ed eseguito da un team dell'INAF

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

%d blogger hanno fatto clic su Mi Piace per questo: