Onde Gravitazionali: la scoperta del secolo, dopo un secolo

Siamo nel 1916. Albert Einstein formula la sua teoria più rinomata: la Relatività Generale. Tra le altre cose, che hanno rivoluzionato la fisica e la nostra visione dello spazio e del tempo, la teoria prevede l’esistenza di onde gravitazionali. Ad un secolo di distanza l’esperimento LIGO rileva una di queste onde, confermando ulteriormente la teoria di Einstein e spalancando le porte a nuove modalità di osservare il cosmo.

Ma procediamo con calma.

La Relatività Generale. Immaginiamo lo spazio, o meglio lo spazio-tempo, perché il tempo in questa teoria è una dimensione esattamente come le tre spaziali, come un tessuto; inserendo una massa su questo tessuto, questo si deforma, facendo convergere la sua trama verso la massa. Questa deformazione è quella che permette, tra le altre cose, ad un pianeta di orbitare attorno alla propria stella, seguendo nel suo moto la curvatura del tessuto.
Questo esempio classico, come la seguente figura è utile per capire intuitivamente la questione, anche se ne dà una rappresentazione solo bidimensionale.

Immaginiamo ora di mettere, su questo tessuto, una massa pesantissima. Che succede? La deformazione è talmente profonda, che neanche la luce riesce più a sfuggire da essa: si ha un buco nero.

Veniamo alle onde gravitazionali. Muovendo una mano sul pelo dell’acqua si formano delle onde, allo stesso modo accelerando una massa e perturbando quindi la deformazione che essa genera, nel tessuto spazio-temporale si originano delle increspature, che prendono il nome di onde gravitazionali. Quando queste onde si propagano nello spazio, lo deformano, facendolo allungare e contrarre ritmicamente. Siccome la luce impiegherà più tempo ad attraversare uno spazio allungato e meno tempo ad attraversarne uno crontratto, misurando il tempo che impiega ad attraversare due condotti tra loro perpendicolari, possiamo vedere se uno di questi è contratto rispetto all’altro. L’effetto di contrazione e allungamento è inversamente proporzionale alla distanza: anche per oggetti molto massicci accelerati, l’onda ha un’intensità piccolissima, a causa della lontananza delle sorgenti. Questo è stato il fondamentale problema nella rilevazione di queste onde: una minuscola vibrazione terrestre anche a migliaia di chilometri dal laboratorio risulta comunque più intensa dell’onda gravitazionale. Gli strumenti utilizzati da LIGO[1] sono tutti tesi a ridurre al minimo il rumore dovuto a queste vibrazioni, per cercare di isolare le piccole vibrazioni gravitazionali [2].

E così è avvenuta la scoperta. Il 15 Settembre 2015, i due strumenti LIGO negli Stati Uniti (uno a Hanford, Washington, e uno a Livingston, Louisiana) hanno rilevato per la prima volta, e con estrema precisione, un’onda gravitazionale. La sorgente è stata in questo caso la collisione di due buchi neri. Essendo oggetti molto pesanti, che come abbiamo detto deformano molto lo spazio-tempo, emetteranno anche molte onde gravitazionali accelerando. E durante la collisione, con conseguente fusione, accelerano moltissimo. In questo video potete vedere la simulazione creata da LIGO di questa fusione.

Si potrebbero essere sbagliati? Si, come sempre nella scienza. Ma le probabilità sono basse, bassissime, tanto da poterne escludere la possibilità. Che due strumenti piuttosto lontani misurino la stessa onda, che oltretutto ha anche una forma prevista dalla Relatività, con una grande precisione, è piuttosto improbabile.

E quindi? Adesso che ne abbiamo rilevata una con grande precisione, possiamo rilevarne altre con meno precisione. Mi spiego. Siccome non era mai stata rilevata nessuna onda gravitazionale, era necessario avere una precisione molto più alta del consueto, ed essere molto cauti nel presentare i risultati; ma siccome adesso abbiamo la prova sperimentale dell’esistenza di queste onde, possiamo permetterci di essere un po’ meno cauti nell’affermare che un determinato segnale sia una di queste onde. Adesso che possiamo accumulare dati sperimentali sulle onde gravitazionali, sarà possibile mappare l’universo con un occhio diverso, esattamente come si sono ricavate informazioni diverse dall’analisi all’infrarosso, all’ultravioletto o ai raggi X.

Siamo solo all’inizio di una lunga serie di scoperte sull’universo che ci circonda; chi può dire cosa ci riserva il futuro?

Ti piace quello che scriviamo? Scopri qui come puoi sostenerci!

Il radiotelescopio cinese FAST entra in funzione
Il 25 settembre scorso è stato inaugurato il Five hundred-meter Aperture Spherical Telescope, il nuovo radiotelescopio cinese. Si tratta del radiotelescopio più grande
Cos'è l'equinozio d'Autunno
Oggi, 23 settembre 2017 alle 03:54, ricorre l’equinozio d'autunno. Ma perché esiste una data precisa che indica la variazione di stagione?
Non tutti sanno, forse, che l’inizio di una stagione
OSIRIS-REx e Bennu: siamo arrivati
A pochi giorni dall'arrivo di InSight su marte, un'altra missione planetaria giunge al suo obiettivo. Oggi, 3 dicembre 2018, infatti, la sonda OSIRIS-REx della NASA si inserirà in orbita
Tutti i premi Nobel 2016
Dal 3 al 10 ottobre 2016 sono stati annunciati i vincitori dei premi Nobel di quest'anno. Di seguito tutto quello che c'è da sapere a riguardo.
Alfred Nobel (l'invetore della dinamite), istituì
Dawn trova ghiaccio su Cerere


Usando i dati della missione Dawn, un team di ricercatori dell'INAF ha individuato una forte presenza di ghiaccio nel cratere Oxo, su Cerere. 
I ricercatori dell'INAF di Roma hanno
Un buco nero da record
Gli astronomi dell'Australian National University hanno trovato un buco nero incredibilmente rapido nell'aumentare le proprie dimensioni fagocitando materia, tanto da detenere il record di accrescimento
Le sosia di Eta Carinae
Eta Carinae è la stella più luminosa e massiccia tra quelle site a meno di 10 000 anni luce dalla Terra ed è particolarmente rinomata per la sua grande eruzione che negli anni 40 dell'800 la ha

[1] MEDIA INAF, Come funziona LIGO

[2] Un videoapprofondimento: Gravitational Waves Explained

Ti piace quello che scriviamo? Scopri qui come puoi sostenerci!

Quando lo Spazio Esterno si avvicina
La linea di Kármán, la demarcazione tra l'atmosfera terrestre e lo spazio esterno, potrebbe essere più vicina di quanto finora ipotizzato. Un nuovo studio la pone infatti a 20 km in
DPF-Device - La Fusione ad Impulsi!
A settembre vi avevamo parlato di Proto Sphera, un approccio innovativo che riconcepisce i tokamak, le tradizionali camere di reazione, che si propone per raggiungere plasmi molto densi
Eclissi di Luna gennaio 2019, gli scatti degli utenti

Quella che segue è una raccolta di tutti gli scatti dell'eclissi di Luna del 21 gennaio 2019 che sono stati inviati nella nostra Community su Facebook.



Cliccate
La stella di Scholz e le comete degli uomini di Neanderthal
Altro che "stelle fisse": le stelle si muovono, e anche molto, all'interno della propria galassia. La stella di Scholz passò a meno di un anno luce dal Sole
Surge glaciali: le inondazioni dei giganti di ghiaccio
Migliaia di ghiacciai si trovano nei pressi di insediamenti umani, e negli ultimi decenni, dozzine di ondate (surge glaciali) hanno provocato morti e feriti. Una
Le nuove foto della cometa di Rosetta in HD
Può una cometa cambiare nel tempo? Vedendo le immagini spesso si ha l'impressione che quei "sassi" che orbitano nel Sistema Solare siano dei corpi deserti e sempre uguali a
I ghiacciai pedemontani dell'isola di Ellesmere

L'immagine, ottenuta tramite il satellite Terra della NASA il 26 luglio 2009, ritrae il ghiacciaio di Turnabout, situato nell'isola canadese di Ellesmere. Si tratta di

4 pensieri riguardo “Onde Gravitazionali: la scoperta del secolo, dopo un secolo

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

%d blogger hanno fatto clic su Mi Piace per questo: