Raggi Cosmici, Fulmini e Datazioni al Carbonio

Un nuovo studio dell’Università di Kyoto ha scoperto che le tempeste possono produrre gli stessi isotopi del carbonio che vengono prodotti dai raggi cosmici ed usati per le datazioni di materiale organico in campo archeologico. 

Gli atomi di carbonio sono i mattoni delle molecole organiche e, quindi, degli esseri viventi. Sulla Terra si può trovare sotto forma di diversi isotopi, ossia atomi con uguale numero di protoni ed elettroni, ma diverso numero di neutroni12C ,13C e 14C (tutti con nuclei formati da 6 protoni e rispettivamente da 6,7 ed 8 neutroni). Di questi, solo i primi due sono stabili, e solo il primo è veramente comune, mentre il 13C è piuttosto raro ed il 14C non potrebbe essere trovato se non fosse continuamente re-immesso nella biosfera tramite alcuni fenomeni.

Il 14C si trasforma (decade) infatti in 14N in poche migliaia di anni (la metà del carbonio iniziale diventa azoto in circa 6000 anni), e ciò significa che se in passato fosse esistito del 14C e non esistessero processi capaci di produrlo, oggi sarebbe tutto stato trasformato in 14N.  Intervengono allora alcuni processi a reintregrare la quantità di 14C presente sulla Terra. Negli strati alti della troposfera e nella stratosfera, i raggi cosmici vengono catturati dall’azoto atmosferico, producendo 14C. Si raggiunge quindi un equilibrio tra questi due processi (decadimento e produzione di 14C) e la quantità di 14C in atmosfera resta costante, e gli atomi si trovano soprattutto legati all’ossigeno sotto forma di anidride carbonica.

Per il 13C, il discorso è simile: esso si forma tipicamente quando i raggi cosmici altamente energetici entrano nell’atmosfera a colpiscono il più abbondante 14N. Gli atomi di questo isotopo dell’azoto perdono un neutrone e diventano 13N, che è instabile. L’13N allora decade formando gli atomi di 13C e due fotoni gamma per atomo di carbonio. Queste emissioni gamma hanno un’energia ben definita, utilizzata spesso proprio per capire quanti raggi cosmici hanno interagito con l’atmosfera.

Questo era lo status quo fino a poco tempo fa. La novità è che esiste anche un altro fenomeno in grado di produrre 14C: i fulmini.

A febbraio, un team di ricercatori giapponesi dell’Università di Kyoto, osservando una tempesta lungo la costa nord-ovest del Giappone, ha rilevato dei segnali gamma proprio allo stesso livello di energia del decadimento che produce il 13C, indicando quindi la produzione di questi atomi anche durante tale tempesta. Inoltre hanno notato anche l’emissione di fotoni ad un livello energetico che indica la produzione 15N, un raro isotopo dell’azoto, a seguito dell’urto tra neutroni ed atomi di 14N.

Qui un approfondimento su come funzionano i fulmini.

Questo indica che i forti fulmini presenti nelle tempeste possono innescare le stesse reazioni innescate dai raggi cosmici. Attenzione: questo non significa che le datazioni al carbonio non siano più valide, in quanto i ricercatori hanno stimato che la quantità di atomi prodotta in questo modo è molto piccola, e trascurabile rispetto a tutti quelli prodotti dai raggi cosmici.

Qui l’articolo su Nature.

Ti piace quello che scriviamo? Scopri qui come puoi sostenerci!

Betelgeuse fotografata da ALMA in alta risoluzione

Per quanto si aumentino gli ingrandimenti, da un telescopio amatoriale quel punto arancione resterà sempre un punto. Diverso è se il telescopio non è amatoriale ma
N6946-BH1: storia di una supernova fallita
Dagli attuali modelli stellari risulta che le supernovae che osserviamo sono meno del previsto. Un nuovo studio, effettuato tramite Lbt, Hubble e Spitzer, potrebbe risolvere
SN 1987a, 30 anni dopo
Era il 24 febbraio del 1987 quando venne riportata la scoperta di un oggetto molto luminoso nella Grande Nube di Magellano (una galassia molto vicina alla nostra), il quale doveva aver aumentato
Trappist-1: la cocente delusione
Ricordate il famoso sistema di Trappist-1, quello costituito da 7 pianeti rocciosi che avevano fatto tanto sperare per quanto riguarda la ricerca esobiologica? Da un recente studio sembra
Scoperto il segreto del Blob Lyman-Alfa
Un team dell'ESO ha scoperto la vera natura dei Blob Lyman-Alfa grazie all'ausilio dei telescopi ALMA e VLT.
I blob Lyman-Alfa, per gli amici LAB, sono nubi di idrogeno di incredibili
2017 BQ6, tutti i primi scatti dell'asteroide
Il 7 febbraio scorso l'asteroide 2017 BQ6 è passato ad appena 6,6 volte la distanza Terra-Luna dalla Terra. Ecco tutte le immagini ottenute tramite l'antenna radio della NASA
L'IAU riconosce i primi 227 nomi delle stelle: elenco completo
Molte delle stelle che conosciamo e delle quali diamo per scontato i nomi non hanno in realtà mai ricevuto il loro nome in maniera ufficiale dalla International

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

%d blogger hanno fatto clic su Mi Piace per questo: